武田 健太郎 /

Kentaro Takeda


was born in Osaka, Japan, in 1994. He received the bachelor of computer science and engineering and the master of frontier informatics from Kyoto Sangyo University, Kyoto, Japan, in 2017 and 2019, and the doctor of engineering from Hosei University, Tokyo, Japan, in 2022. He is currently an Assistant Professor with the Faculty of Engineering and Design, Kagawa University, Takamatsu, Japan. His current research interests include nonlinear dynamics, neuromorphic engineering, and digital circuit design.


Affiliation

香川大学 創造工学部 創造工学科 情報通信コース
761-0396 香川県高松市林町2217-20
087-864-2210
takeda[at]mail.nsci.jp
takeda.kentaro.j6[at]kagawa-u.ac.jp

Biography

2022/04–

香川大学 創造工学部 創造工学科 情報通信コース 助教

2019/04–2022/03

日本学術振興会 特別研究員 (DC1)

2019/04–2022/03

法政大学 大学院理工学研究科 電気電子工学専攻 博士後期課程

2017/04–2019/03

京都産業大学 大学院先端情報学研究科 先端情報学専攻 博士前期課程

2013/04–2017/03

京都産業大学 コンピュータ理工学部 ネットワークメディア学科

2010/04–2013/03

大阪市立西高等学校 情報科学科

2007/04–2010/03

八尾市立龍華中学校

2001/04–2007/03

八尾市立龍華小学校

1994/06


Awards

  1. 2020 International Symposium on Nonlinear Theory and its Applications, Student Paper Award.

  2. 2019年度 第82回 電子情報通信学会 学術奨励賞 (基礎・境界ソサイエティ).

  3. 2018年度 電子情報通信学会複雑コミュニケーションサイエンス研究会 CCS奨励賞.

  4. 2016 Japan-Korea Joint Workshop on Complex Communication Science, Best Paper Award.


Publications


Journal Articles


  1. Yui Kishimoto, Itsuki Kubota, Kentaro Takeda, and Hiroyuki Torikai, ``A Novel Hardware-Efficient Auditory Neuron Model based on Ergodic Cellular Automaton and its First Pitch-Shift Effect,'' Nonlinear Theory and Its Applications, IEICE, vol. 13, no. 2, pp. 391–396, 2022. 10.1587/nolta.13.391

  2. Kentaro Takeda and Hiroyuki Torikai, ``Phase-Locking Phenomena in Ergodically Coupled CA Phase Oscillators and its Theoretical Analysis,'' Nonlinear Theory and Its Applications, IEICE, vol. 13, no. 2, pp. 434–439, 2022. 10.1587/nolta.13.434

  3. Sho Komaki, Kentaro Takeda, and Hiroyuki Torikai, ``A Novel Ergodic Discrete Difference Equation Model of Central Pattern Generator: Theoretical Analysis and Efficient Implementation,'' IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 3, pp. 1767–1771, 2022. 10.1109/TCSII.2021.3108846

  4. Kentaro Takeda and Hiroyuki Torikai, ``Two-Tone Distortion Products in Hardware-Efficient Cochlea Model based on Asynchronous Cellular Automaton Oscillator,'' IEICE Electronics Express, vol. 18, no. 18, p. 20210310, 2021. 10.1587/elex.18.20210310

  5. Kentaro Takeda and Hiroyuki Torikai, ``A novel hardware-oriented recurrent network of asynchronous CA neurons for a neural integrator,'' IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 8, pp. 2972–2976, 2021. 10.1109/TCSII.2021.3063932

  6. Kentaro Takeda and Hiroyuki Torikai, ``Smooth gait transition in hardware-efficient CPG model based on asynchronous coupling of cellular automaton phase oscillators,'' Nonlinear Theory and Its Applications, IEICE, vol. 12, no. 3, pp. 336–356, 2021. 10.1587/nolta.12.336

  7. Kentaro Takeda and Hiroyuki Torikai, ``A Novel Hardware-Efficient Central Pattern Generator Model based on Asynchronous Cellular Automaton Dynamics for Controlling Hexapod Robot,'' IEEE Access, vol. 8, pp. 139609–139624, 2020. 10.1109/ACCESS.2020.3012706

  8. Kentaro Takeda and Hiroyuki Torikai, ``A Novel Asynchronous CA Neuron Model: Design of Neuron-like Nonlinear Responses based on Novel Bifurcation Theory of Asynchronous Sequential Logic Circuit,'' IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 6, pp. 1989–2001, 2020. 10.1109/TCSI.2020.2971786

  9. Kentaro Takeda and Hiroyuki Torikai, ``A novel spike-train generator suitable for QCA implementation towards UWB-IR applications,'' Nonlinear Theory and Its Applications, IEICE, vol. 9, no. 4, pp. 436–452, 2018. 10.1587/nolta.9.436

  10. Kentaro Takeda and Hiroyuki Torikai, ``A Novel Hardware-Efficient CPG Model based on Asynchronous Cellular Automaton,'' IEICE Electronics Express, vol. 15, no. 1, p. 20180387, 2018. 10.1587/elex.15.20180387

  11. Kentaro Takeda and Hiroyuki Torikai, ``A Novel Hardware-Efficient Cochlea Model based on Asynchronous Cellular Automaton Dynamics: Theoretical Analysis and FPGA Implementation,'' IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 9, pp. 1107–1111, 2017. 10.1109/TCSII.2017.2672824



International Conference


  1. Itsuki Kubota, Kentaro Takeda, and Hiroyuki Torikai, ``A Novel Hardware-Oriented Ergodic CA Cochlear Model: Reproduction of Nonlinear Response to Two-tone Stimuli and Theoretical Analysis,'' Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2022.

  2. Kentaro Takeda and Hiroyuki Torikai, ``Synchronization phenomena of asynchronously coupled cellular automaton phase oscillators and its theoretical analysis,'' Proceedings of the 2021 Nonlinear Science Workshop (NLSW), p. 42, 2021.

  3. Hiroyuki Torikai, Kengo Hosoi, Kentaro Takeda, and Sho Komaki, ``Ergodic Cellular Automaton Neuromorphic and Biomimetic Circuits: The Debut,'' Proceedings of the 2021 IEEE Workshop on Nonlinear Circuit Networks (NCN), p. 63, 2021.

  4. Sho Komaki, Kentaro Takeda, and Hiroyuki Torikai, ``A novel asynchronous sequential logic model of central pattern generator for quadruped robot: systematic design and efficient implementation,'' Proceedings of the 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2021. 10.1109/IJCNN52387.2021.9533960

  5. Kentaro Takeda and Hiroyuki Torikai, ``Asynchronous CA Model of Central Pattern Generator,'' Proceedings of the 2020 International Symposium on Nonlinear Theory and its Applications (NOLTA), pp. 303–306, 2020.

  6. Kentaro Takeda and Hiroyuki Torikai, ``A novel hardware-efficient CPG model based on asynchronous coupling of cellular automaton phase oscillators for a hexapod robot,'' Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2020. 10.1109/IJCNN48605.2020.9207230

  7. Kentaro Takeda and Hiroyuki Torikai, ``Asynchronous cellular automaton neuromorphic circuit: design of nonlinear responses based on design of bifurcation phenomena,'' Proceedings of the 2019 International Symposium on Nonlinear Theory and its Applications (NOLTA), pp. 324–325, 2019.

  8. Kentaro Takeda and Hiroyuki Torikai, ``A novel hardware-efficient CPG model for a hexapod robot based on nonlinear dynamics of coupled asynchronous cellular automaton oscillators,'' Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2019. 10.1109/IJCNN.2019.8852174

  9. Kentaro Takeda and Hiroyuki Torikai, ``Asynchronous cellular automaton models of biological system,'' Proceedings of the 2018 International Symposium on Nonlinear Theory and its Applications (NOLTA), p. 427, 2018.

  10. Kentaro Takeda and Hiroyuki Torikai, ``A novel hardware-efficient spiking neuron model based on asynchronous cellular automaton dynamics exhibiting various nonlinear response curves,'' Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, 2018. 10.1109/IJCNN.2018.8489745

  11. Kentaro Takeda and Hiroyuki Torikai, ``A Neuromorphic Quantum-dot Cellular Automaton,'' Proceedings of the 6th Korea-Japan Joint Workshop on Complex Communication Sciences, P29, 2018.

  12. Kentaro Takeda and Hiroyuki Torikai, ``Basic Analysis of a Spike-train Generator based on Quantum-dot Cellular Automaton,'' Proceedings of the 2017 IEEE Workshop on Nonlinear Circuit Networks (NCN), pp. 104–105, 2017.

  13. Kentaro Takeda, Chiaki Matsuda, and Hiroyuki Torikai, ``Design of Electronic Circuit Model of Neural System based on Hybrid Dynamical System,'' Proceedings of the 2017 International Symposium on Nonlinear Theory and its Applications (NOLTA), p. 628, 2017. 10.34385/proc.29.C2L-A-2

  14. Kentaro Takeda and Hiroyuki Torikai, ``A Novel Hardware-Efficient CPG Model based on Nonlinear Dynamics of Asynchronous Cellular Automaton,'' Proceedings of the 24th International Conference on Neural Information Processing (ICONIP), Part of the Lecture Notes in Computer Science book series, vol. 10639, pp. 812–820, 2017. 10.1007/978-3-319-70136-3_86

  15. Kentaro Takeda and Hiroyuki Torikai, ``Experiments on a Hardware-Efficient Bio-Inspired Snake-like Robot,'' Proceedings of the 2017 Taiwan and Japan Conference on Circuits and Systems (TJCAS), p. 53, 2017.

  16. Kentaro Takeda and Hiroyuki Torikai, ``Reproduction of Nonlinear Cochlea Response by Asynchronous Bifurcation Processor,'' Proceedings of the 2016 International Symposium on Nonlinear Theory and its Applications (NOLTA), pp. 279–282, 2016. 10.34385/proc.48.A4L-E-1

  17. Kentaro Takeda and Hiroyuki Torikai, ``Design of Biomimetic Digital Hardware based on Asynchronous Bifurcation Processor,'' Proceedings of the 5th Japan-Korea Joint Workshop on Complex Communication Sciences (JKCCS), p. 83, 2016.

  18. Hiroyuki Torikai, Kentaro Takeda, and Taiki Naka, ``Asynchronous Bifurcation Processor: Fundamental Concepts and Application Examples,'' Proceedings of the 4th International Conference on Applications in Nonlinear Dynamics (ICAND), Part of the Lecture Notes in Networks and Systems book series, vol. 6, pp. 217–229, 2016. 10.1007/978-3-319-52621-8_20



Domestic Conference


  1. 武田健太郎, 鳥飼弘幸, 非同期順序回路の非線形現象とその応用, CCS/IN 合同ワークショップ, 2019.

  2. 武田健太郎, 鳥飼弘幸, 非同期セルオートマトンに基づいたニューロンモデルの安定性解析について, 2019年電子情報通信学会NOLTAソサイエティ大会, B-13, 2019.

  3. 武田健太郎, 鳥飼弘幸, 非同期セルオートマトン発振器の結合系に基づいたCPGモデルについて, 電子情報通信学会総合大会講演論文集, N-2-4, 2019.

  4. 武田健太郎, 鳥飼弘幸, 非同期セルオートマトンに基づいたニューロンモデルの分岐現象について, 電子情報通信学会技術研究報告 複雑コミュニケーションサイエンス研究会, vol. 118, no. 316, pp. 1–5, 2018.

  5. 武田健太郎, 鳥飼弘幸, 遅延を有するQCAスパイク列発生器のリターンマップについて, 2018年電子情報通信学会NOLTAソサイエティ大会, B-1, 2018.

  6. 武田健太郎, 鳥飼弘幸, 非同期セルオートマトン発振器の結合系の解析と応用について, 電子情報通信学会技術研究報告 複雑コミュニケーションサイエンス研究会, vol. 117, no. 288, pp. 55–79, 2017.

  7. 武田健太郎, 鳥飼弘幸, 非同期セルオートマトンに基づくCPGモデルを用いたヘビ型ロボット, 2017年電子情報通信学会NOLTAソサイエティ大会, B-7, 2017.

  8. 武田健太郎, 鳥飼弘幸, 非同期分岐プロセッサを用いたHopf蝸牛モデル, 電子情報通信学会技術研究報告 複雑コミュニケーションサイエンス研究会, vol. 116, no. 285, pp. 17–21, 2016.